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F 1. INTRODUCTION

For airplane and engine applications, the higher specific strength and superior properties
of titanium and its alloys at above-ambient temperatures offer many advantages over the more
traditional aluminium alloys and steels. Tables I and 2 compare some of the more important
physical and mechanical properties o titanium and the 6A1 4V alloy with those of 7075 alumin-
iurn alloy and D6 AC steel. The advantages of titanium alloys have long been recognized but,
only recently, have they been used more extensively to provide the increased structural and
mechanical performance required of modern aircraft. While titanium alloys were used in aircraft
during the late 1950's and steadily found increased application during the 1960's, the long-
predicted boom in titanium usage has not yet eventuated. Two important factors have been the
lack of accrued long-term service experience and the unique difficulties in fabricating titanium
alloy components. The practical influences of these factors are being avoided by restricting
service application (and research evaluation) to a very small number of alloys and by developing
innovative and improved fabrication techniques. These approaches have enabled acceptable
performance-to-cost benefits to be attained.

TABLE I.

Melting point and density of Titanium, compared with Iron, Aluminium
and Magnesium.

Metal Melting Point Density
°C (g/cc)

Titanium 1680 1 4.54
Iron 1535 7.86
Aluminium 660 2•70
Magnesium 650 1.74

TABLE 2

Principal mechanical properties of Titanium, TI-6A1-4V compared with aluminium
alloy 7075 and D6AC steel.

Alloy YS UTS Elongation
(MPa) (MPa) (M)

Titanium: commercially pure 340 440 25
6AI/4V 1100 1200 10

Aluminium: 99.5(/ 35 80 47
7075-T6 460 520 II

Steel: low carbon 200 360 30
D6AC 1400 1500 10



2. GENERAL CHARACTERISTICS
Titanium is the ninth most abundant element in the earth's crust and tile fourth most

common of the structural metals (after aluminium iron and magnesium). Because a considerable
amount of energy is required to extract titanium from its oxide ore minerals (rutile and ilmenite)
the development o' the new industry lagged until the introduction of the Kroll process (1941)
which allowed large-scale production of titanium. This process involves a two-stage pyro-
metallurgical chemical reaction at 850'C which reduces titanium tetrachloride in the presence
of magnesium, and yields 99.5 % pure titanium. Sodium is often now substituted for magnesium,
to improve efficiency.

Titanium is a silvery-grey paramagnetic metal whose density (see Table 1) falls between
aluminium and steel. In alloy form it possesses twice the strength of aluminium alloys, five times
the strength of magnesium alloys and is stronger than some alloy steels. On a specific strength
basic, savings in weight of 40% may be achieved by replacing steel with titanium alloy.

A wide variation in physical and mechanical characteristics may be obtained by alloying
titanium with other elements, including oxygen, aluminium, vanadium, tin, zirconium, mang-
anese, molybdenum and copper. The high melting point (1680'C) of titanium leads to the
retention of good tensile and creep properties up to 500'C, well above that for aluminium and
magnesium alloys.

Titanium is extremely reactive and instantly forms a thin coherent surface oxide film when
exposed to air. This passive film is mechanically very strong and chemically stable and provides*1 high resistance to most types of corrosion. Moreover, the film reforms immediately if broken by
impact or abrasion although at high temperatures (> 650C0, the metal dissolves its oxide and
these passivating effects are lost. However, this dissolution of the oxide does facilitate the
diffusion-bonding of titanium parts (sect 6.2) which is becoming of great significance in aircraft
construction.

3. BASIC METALLURGY OF TITANIUM

Titanium exists in two crystal forms, alpha and beta ( Alpha titanium has a close-packed
hexagonal structure which transforms to the beta, body-centred cubic structur, at 885'C (1625"F).
The various alloying elements added to titanium can be classified according to their effect on
the ,,Pfl transformation temperature. Commonly, the "commercially-pure" grades contain
oxygen, which increases the transformation temperature and thus the alpha range, and hence is
referred to as an interstitial alpha-stabilizer. The extensive solid solubility of oxygen permits
strengthening by solid-solution effects, increasing the UTS from 170 MPa to 500 MPa. Lowering
oxygen contents to extra low interstitial (ELI) levels (0. 10-0. 13%) considerably improves the
fracture toughness but with some loss in yield strength. However, at very low oxygen (VLO)
contents (less than 0.08'//o) the reduced yield strength levels are unacceptable for aircraft
applications. Other interstitial alpha-stabilizers are hydrogen and nitrogen, these must be held
to very low levels to avoid serious loss of ductility.

Aluminium is the major substitutional element capable of stabilizing the alpha form of
titanium. Further solid-solution strengthening of alpha titanium is obtained when tin and
zirconium are added jointly with aluminium.

Many of the transition metals e.g. vanadium, niobium, molybdenum and tantalum form
isomorphous solid solutions and lower the o to#3 transition temperature when added to titanium
and are thus beta-stabilizers. Other beta-stah.liters which form cutectoids with titanium, are
chromium. manganese, iron, cobalt, nickel, copper and silicon. Tin and zirconium, which only
marginally lower the u t g transition temperature, are regarded as being effectively neutral.
Titanium alloys containing various combinations of these alloying elements are thus eithe.'
single or two phase (e or 9) or (a i fl). Certain definable properties are ascribed to each type.

Alpha alloys are weldable with good ductility and high creep strengtii at elevateU tem-
peratures, while beta alloys are heat-treatable, stronger and easier to fabricate. The two-phase
alloys have intermediate properti's.



TABLE 3

Comparative Properties of Single and Tweo-Phase Titanium Alloys

Phases Present Strength Ductility Heat-treatable Weldability

Aipha Moderate Good No Excellent
Alpha + Beta Stronger Modeiate Yes Good

Beta Strongest Low Yes Poor

The single-phase alpha structure occurs in commercially pure titanium, and in alloys with
over 5% aluminium and minor quantities of beta-stabilizing elements. However, there is an
upper limit to the total amount of alpha-stabilizing elements above which a short-range ordering

reaction may cause a significant loss of ductility, To avoid this situation, an empirical stability/
ordering parameter is invoked whereby aluminium +- j (tin) + A (zirconium) + A- (oxygen) +
4 (silicon) must remain less than 8 weight percent.

The two-phase (a+#) structure is usual when no more than 5 weight percent of beta
stabilizers and up to 8 weight percent of aluminium is present. Further additions of beta stabil~zers
produce a single-phase beta structure at room temperature. The mechanical properties of
titanium alloys usually depend on the relative amounts of each phase present, as well as on
variables which affect the distribution of the phases (e.g. composition, thermal history and heat-
treatment).

3.1 Commonly Used Alloys

Commercially pure titanium has the highest ductility, combined with high corrosion-
resistance (better than most titiLnium alloys). Oxygen additions confer moderate tensile strength,
with the most common grades possessing UTS of 280, 380 and 480 MPa (40, 55 and 70 ksi).

The alloy 5% AI-2 .5% Sn is the best established of the alpha alloys and exhibits good
weldability, medium strength and good elevated temperature creep properties, but it is not
heat-treatable. It is used only in the annealed condition and has very high fracture toughness at
room and elevated temperatures.

The alloy 8% Al-I % Mo-I % V is the best-krown of a series of super alpha (or lean f)
alloys, designed to retain the excellent weldability of alpha alloys but with improved elevated
temperature tensile strength and creep resistance, superior to other commonly available alpha
or alpha-beta alloys. This alloy is stable to 500'C (950'F) and has the highest tensile modulus
and lowest density of any commercial titanium alloy.

,I The alloy 6 % AI-4% V, an alpha-beta type, is well-known as a general purpose structural
alloy for aircraft and space vehicle use and may be heat-treated to a wide range of strength
levels. In its fully aged cor-l'it on, it is suitable for highly stressed welded structures and exhibits
good stability to 400'C (750°F. This alloy accounts for over half of titanium alloy production,
but is one of the most difficul, to fabricate among annealed titanium alloys, being essentially
hot working due to its composition.

The alloy 6% AI-6% V-2 % Sn is a beta-rich, alpha-beta type, and sacrifices weldability
(compared with 6AI 4V titaniun,) for higher annealed strength (15 percent > 6AI 4V) and
improved heat-treatment response (generally, two-phase alloys retain weldability if the beta
content is below 20 percent).

The alloy 3% A1-13% V-IlI 'X) Cr is a metastable beta alloy combining high formability
with high room-temperature strength (UTS up to 1320 MPa or 200 Ksi), but relatively low
creep resistance at elevated temperatures.

Although there are over one hundred and sixty different al'.oys, 90 percent of usage involves
the commercially pure grades and the foie specific alloys mentioned above,
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4. SPECIFICATION DESIGNATIONS OF TITANIUM ALLOYS

Titanium alloys are best designated by their chemical composition. A comprehensive list
of commercial and developmenta! titanium alloy compositions is arranged in Appendix I.
Alloys having related compositions fall together and may be compared; in addition, the list
has been subdivided into the generic alloy types (e.g. alpha, super alpha, alpha-beta and beta
alloys) as their alloy phase characteristics given in Table 3 will broadly apply.

The designations employed by national standards organizations, trade societies and supply
companies are largely arbitary but sonic become widely recognized through common usage,
Hence, it may be useful to describe the format of sonic of these systems relating to aeronautical
use,

4.1 United Kingdom Specifications

Within their "Aerospace Series" specilications, the British Standards Association denotes
titanium alloys with the prefix TA. Currently titanium alloys range trom TA I to TA 55 e.g. the

alloy 6% AI-4% V is denoted by BS, TA 10, TA II, TA 12, TA 13, depending on the product
form (sheet, rod etc).
DTD specifications (Directorate of Technical Development) are issued by the Ministry of
Defence. Here, titanium alloys are included in a grouping known as "Aerospace Materials and
Processes" (DTD series 1-999 and 5000-5999). The alloy 6 %' A 1-4•% V is denoted by I)TD 5303,
5313 and 5323, depending on the product form.

Imperial Metals Industries (UK) a major titanium supplier, uses a three-digit designation,
preceded by their initials e.g. IMI 318 denotes the alloy 6% Al-4V V.

4.2 United States Specifications

The Society of Automotive Engineers (SAE), within their "Aerospace Material Specifications"
series, use a four-digit designation. Current titanium alloys range from AMS 4901 to A.MS 4998
and ten of these denote 6% AI-4 %, V, in various conditions.

The American Society for Testing and Materials (ASTM) place titanium alloy specifications,
together with other non-ferrous metals, in one group prefixed by the letter B. The main titanium
alloy specifications are B265, 348, 367 and 381 again depending on the product form.

Military Specifications (Mil Spec) for titanium alloys are designated numerically, but are
scattered throughout the main body of some ninety-thousand specifications e.g. Mil-F-83142
denotes the specification "Forging, Titanium Alloys for Aircraft and Aero~q.ice Applications".
The prefix letter (F) has no particular significance, it is simply derived from the firht letter of
the title. Other titanium alloy specifications, which all have the prefix "Mil-T-" arc, 9046, 9047,
46035, 46038, 81556 and 81915. The prefix "Mil-STD-" denotes a separate series, called "Military
Standards" with the alternative prefix "MS", replacing "MIL-STD" in more recent issues.

iThe Unified Numbering System (UNS), introduced jointly in 1975 by SAE and ASTM,
provides a means of correlating various nationally used numbering systems for all types of
metals and alloys. The format consists of a letter, fodowed by five digits. Titanium alloys appear
as part of a group called "Reactive and Refractory Metals and Alloys" and are prefixed R5 xxxx
e.g. the a!ioy 6 % AI-4 % V is UNS R5640 X, the final figure in this case, indicating purity levels.

Major US producers use company identification symbols, e.g. MMA6510 of Martin
Marietta Aluminium (Titanium Division) for 6% AI-4% V and RMI 6AI/4V from RMI Co.
(formerly Reactive Metals), or simply nominal compositions e.g. Ti-6AI/4V from Timet
(Titanium Metals Corporation of America). Crucible Inc. uses a three-part code; firstly, a letter,
A, B or C denoting an alpha, beta or two-phase alloy respectively; then a number indicating
the minimum tensile yield strength; followed by suffix letters to indicate alloying elements.
Thus CI20AV denotes 6"%, A-4",, V alloy.

4.3 French Specifications

AECMA (Association of European Manuiactures, Paris, France) use the format Ti P.XX
for titanium alloy designations e.g. Ti P.63 denotes the 6"'%, AI-4" V alloy.
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AIR NORMS (Regulations AIR, Paris, France) use a prefix T, followed by a letter code,

indicating principal alloying elements and often integers indicating the amount of each element
e.,,. T-A6V denotes the alloy 6,% AI-4". V. This element code, which also applies for aluminium
alloys (prefixed by A) is given alphabetically as follows:

A aluminium K .... cobalt V - vanadium
C = chromium M manganese W tungston
D = molybuenum N -: nickel Z zinc
E = tin S - silicon Zr (or ZR) zirconium
G = magnesium U -copper

A major supplier, Pechiney-Ugine-Kuhiman (PUG Group, Paris, France) uses a similar
notation to AIR Norms, but with the prefix UT, instead of T.

4.4 German Specifications

Luftfahrt Werkstoffe (Aircraft Material and Aircraft Industry), or LW numbers for titanium
alloys use the format 3.7XXX e.g. LW 3.7164 denotes the 6% AI-4% V alloy. The prefix
"LW" is often substituted by "BWB", in Britain.

DIN (Gnrman Standards) take the form 178XX, such as DIN 17851 for 6% AI-4% V alloy.
DIN Werkstoffe designations, which are subdivisions of general DIN specifications, appear

as DIN 3"7XXX.

5. SERVICE PROPERTIES OF TITANIUM AND ITS ALLOYS

5.1 Corrosion and Oxidation

Titanium is a highly reactive metal and forms a thin protective film of oxide whenever it

is exposed to air or other environments containing available oxygen. This film gives titanium
its excellent corrosion resistanme. The most protective films on titanium are usually developed
when waxer. even in trace amourts, is present. However, when titanium and its alloys are exposed
to strongly oxidizing environments in the absence of moisture, the film formed is not protective
and rapid oxidation may take place e,g, titanium is quite resistant to wet chlocine (I% moisture)

but is readily attacked by dry chlorine. Generally, titanium and its alloys show exceptionally
high resistance to atmospheric corrosion in industrial and marine environments, and to sea water.
They are also highly resistant to strong oxidizing acids, salt solutions and moist oxidizing gases.
Foi long-time service, the upper temperature limit for titanium in hot air is about 700'C, whik:
1200'C is possible in short-time applications e.g, fire walls surrounding jet engines. A lower
temperature limit is minus 250'C, when ELI grades are usFd for maximum toughness,

When passivated with its protective oxide film, titanium is the more noble metal in galvanic
couples with all structural alloys except monels and stainless steels, In most environments, the
potential of passivated titanium is similar to that of stainless steels. Thus, less noble metals,
such as aluminium alloys, carbon steels and magnesium, may suffer accelerated attack when
coupled with titanium, particularly where large cathodic areas of titanium material are coupled
to the latte metals in aggressive environments.

Attack is prevented or minimized in most cases by protective paints and other treatments.
However, titanium alloys are generally less corrosion-resistant than commercially pure titanium.

Two dangerous environments for titanium are (i) red-fuming nitric acid which, in the
presence of water and nitrogen dioxide, may produce a pyrophoritic explosion, and (ii) liquid
oxygen which can detonate on impact. In turbine engines, titanium fires have occurred where
parts of compressor blades ignited due to overheating in direct rubbing contact, or as a con-
sequence of mechanical failure or foreign olbject damage.

Titanium alloys may undergo c.'acking through processes involving liquid-metal embrittie-
ment, hydrogen damage or fatigue damage. Mercury, gallium, and molten cadmium cause rapid
cracking (liquid-metal embrittlement) of stressed titanium alloys. Silver, in the form of silver-
plated steel bolts in contact with titanium alloys, has caused cracking at temperatures above
340'C. These possibilities are recognized in various specifications, e.g. MIL-STD-1 568 prohibits

51
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cadmium-plating of titanium parts or their use in direct contact with other cadmium-plated
"parts or tools, while MIL-S-5002 prohibits silver-plating on, or in contact with, titanium,

Precracked titanium alloys are susceptible to stress-corrosion cracking in salt solution.
This susceptibility appears to increase with increasing aluminium and tin content (alpha sta-
bilizers) and decrease with increasing amounts of molybdenum, vanadium and niobium (beta
stabilizers). Most titanium alloys are also susceptible to hot-salt stress-corrosion at temperatures
above 320'C. The alpha alloys are apparently more susceptable than alpha-beta alloys e.g, alloy
8AI-IV-lMo is very susceptible, while alloys 6AI 4V, 6AI 6V 2Sn and 3AW 13V I 1Cr are mod-
erately so, one of the most resistant is 4AI 3Mo IV alloy, though variations in heat-treatment
affect the reactivity of many alloys. However failures of this type in service applications have
been rare.

5.2 Fatigue and Fracture

Fatigue strength and fracture toughness are two important mechanical properties. Both
depend on many interrelated metallurgical fact"-s i.e, no single factor shows dominant control
over fatigue properties. Titanium exhibits greater sensitivity to more of these factors than other
metals, such as steel and aluminiium and, thus, the scatter in fatigue data is more severe. Inter-
stitial elements are an important factor. Generally, higher oxygen contents improve strength
and fatigue properties but decrease fracture toughness. However, other interstitials (nitrogen,
carbon and hydrogen) are detrimental. These contaminants are readily absorbed, especially
by beta alloys, during hot working and heat treating and this factor may account for part of
the wide scatter in fatigue properties. Titanium alloys containing a large proportion of alpha
phase show marked anisotropy in fatigue properties. These property variations occur because
the hexagonal crystal structure of the alpha phase is susceptible to the development of strong
crystal textures during rolling, forging and extrusion processes. Environment does not appear
to have a major effect on crack initiation in titanium but can appreciably affect crack propagation
at low rates of cyclic loading. In genera!, fatigue str-ngth decreases with increasing temperature,
usually in proportion to tensit,. strength. Normal atmospheric endurance limits lie within the
range 0,5 to 0.65 times the ultimate tensile strength, although stress-raisers (notches, rough
surfaces, fretting-see later) may reduce this factor appreciably. Most coatings lower the fatigue
strength, the exceptions being certain oxide or anodized coatings. Generally, t'e best fatigue
properties are obtained in fine grained alpha-beta alloys containing a relatively high proportion
of alpha phase.

Rates of fatigue crack growth in and fracture toughness of, titanium alloys are sensitive to
micro-structural differences induced by diffirent fabrication processes and heat-treatments.
The fracture toughness of alpha-beta alloys is highest in solution-treated alloys which contain
a low proportion of alpha phase (10-25%) distributed in an acicular rather than an equiaxed
form throughout the beta matrix, However, these alloys possess lower toughnesses than the
high values developed in the meta-stable beta alloys.

5.3 Fretting Damage

Titanium and its alloys are particularly sensitive to contact damage, a characteristic which
may lead to "fretting fatigue" and a subsequent serious reduction in strength. Fretting itself is
a form of wear which occurs when two metal surfaces, pressed together by an external static
load, are subject to a transverse cyclic loading so that one contacting face is cyclically displaced
relative (and parallel) to the other face. It is characterized by extremely small relative displace-
ments of the contacting surfaces (less than 0.1 mm) and often the small fragments of metal
which break off lead to surface pitting, accelerated by the oxidation products which usually
provide harder and thus more abrasive particles. Fretting fatigue occurs when fretting takes
place in metal under dynamic loads. Fretting damage in titanium alloys can reduce fatigue life
by almost a factor of eight, compared with a reduction factor of about three for similar damage
in aluminium alloys.

Considerable efforts are made to minimize fretting in titanium alloys. Anti-fretting agents,
such as oils and greases, appear to act by reducing metal-metal contact, by absorbing the fretting
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movement, by spreading and reducing the local severity of the damage, and by excluding the
atmosphere. Other solutions to the problem include plasma spray deposition of tungsten carbide,
thermal diffusion of nickel and chromium electroplating, and induced compressive stresses by
shot or glass-ball peening.

Titanium alloys may be anodized but, unlike aluminium, the films do not adhere strongly
and may exhibit friability. Nevertheless, anodizing does assist in the adhesion of subsequently
applied organic coatings containing molybdenum disulphide to reduce fretting. Tough adherent
films are theoretically possible and could (in future) provide a basis for other anti-fret overlays.
Usual treatments, in decreasing order of effectiveness, are:

(a) Anodize, for antigalling and wear resistance,

(h) Apply metallic coatings (cadmium or ,,inc prohibited, silver over nickel is acceptable)
plus paint or resin coating.

(c) Paint or resin coating with flaying edges sealed.

(d) Bare metal with faying edges sealed. in contact with metals other than manganese,
zinc or cadmium.

Generally, where there is a choice of treatments, a higher level treatment is preferred for
the more active metal, and an alternative treatment for the less active metal, as the more active
metal is likely to undergo more corrosion initially.

5.4 Creep Properties

Creep in titanium alloys is not significant unless the temperature exceeds 400'C, or design
stresses exceed 90% yield. Under these conditions, alpha (hexagonal close-packed) alloys are
more creep-resistant than beta (body-centred cubic) alloys. Moreover, since the hexagonal
structure is strongly anisotropic, control of crystal texture allows optimization of such properties
in preferred directions.

6. MANUFACTURING PROCESSES FOR TITANIUM AND ITS ALLOYS

6.1 Conventional Processing

Most structural applications of titanium alloys have been in airclaft and space vehicles.
Factors influencing material selection are cost, service temperatures, loads and part configura-
tions. Relative to titanium alloys, aluminium alloys currently enjoy large advantages in both
material and processing costs. Hence, the utilization of aluminium alloys has been optimized
around its excellent formability and machinability, while avoiding its rather poor (especially for
high strength alloys) weldability. Thus, aluminium structures commonly contain numerous
detail parts which are mechanically fastened together in a variety of ways, with larger structures
being extensively machined, These established design and manufacturing processes are not
suitable for titanium alloys, nor can they be successfully adapted. The development of more
efficient processing options for titanium requires continual appraisal of its physical characteristics
and advanced methods are discussed in section 6.2.

Titanium is relatively difficult to form, roll and extrude and difficult to machine and drill.
Moreover, the chemical reactivity of titanium allows it to react rapidly at high temperatures
with oxygen, nitrogen and constituents in cutting tools, thus contributing to seizing, galling
and abrasion during machining. Titanium also ]-as relatively low thermal conductivity which
causes very high temperatures at tool tips, The machinability of commercially pure titanium
can be considered to be similar tc that of the austenitic stainless steels but differences in composi-
tion and hardness, of other titanium alloys, give rise to large variations in machinability.

The formability of titanium alloys is also similar to stainless steels. Most titanium alloys
are either hot-formed or cold-preformed and hot-sized. [he high notch-sensitivity of titanium
often leads to cracking or tearing, especially in cold-forming. Galling and springback variations
and a tendency to shrink cause greater problems with titanium than with stainless steels. Purer
grades of commercially pure titanium, containing less oxygen, are more %Ormable. Heating
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titanium alloys improves formability and reduces springback but contamination is a se'vere
problem at higher temperatures.

Hydrogen absorption, which may embrittle some titanium alloys is usually removed by
vacuum-annealing. The other main practical contamination problem is exposure to air at
temperatures greater than 650"C. The brittle surface layer, form':d by oxygen diffusion, is removed
by pickling, grinding or machining, Forging conditions are similar to steels but more energy is
required per part and the working (forging temperatures) range is narrower.

Despite the above disadvantages, titanium alloys have inherent strength, toughness and
high-temperature advantages over other metals, eg. the upper temperature limit for the utilization
of aluminium alloys (about 180'C) precludes their application in areas subje.t to engine-heating
and to aerodynamic heating at supersonic speeds.

6.2 Advanced Processing Techniques

To compete on a cost basis, new, efficient processing options have been utilized for producing
titanium parts. The common objective in methods such as superplastic-forming, diffusion-bond-
ing, hot isostatic-pressing and isothermal lorging, is to provide near net-shape component
forms, thereby minimizing the number of individual details, reducing assembly costs and
minimizing metal removal costs,

Titanium alloys become superplastic under given conditions of microstructure, temperature
and pressure, exhibiting tensile elongations of up to 1000 ". Under these conditions it will flow
into die cavities and undertake the precise configuration of the die. Titanium will also diffusion-
bond to itself* under conditions very similar conditions to those for superplastic forming-thus,
conditions can be optimized to enable both processes to proceed togethei i' a combined 'orming
and bonding operation, which can marked. reduce recurring fabrication costs.

Materials utilization is also improved by compacting titanium powders in inert atmospheres
by hot isostatic pressing and isothermal forging techniques to produce near net shape titanium
forgings. Conditions for hot isostatic pressing include compacting spherical pre-alloyed titanium
powder in an autoclave, usually at 100 MPa pressure for two to three hours, at a temperature
just below the beta transus. In isothermal forging, titanium preforms are forged in heated dies;
minimal heat loss allows time to fill die details, resulting in near net shapes.

7. CURRENT AND FUTURE TRENDS FOR TITANIUM USAGE

Titanium usage in present day aircraft, botn military and civil, appears to have stabilized.
Amongst other factors, increasing usage into the 80's has been forestalled by the cancellation
of the BI strategic bomber and the US-SST supersonic transport (mainly ,itanium) projects,
Nevertheless, strong demand continues in military aircraft, where titanium forms important
areas of the airframe, such as main spars, landing gear struts and areas subject to engine-heating,
as well as various engine components (Table 4). On the civil side, aluminium remains the
predominant airframe material, as improved alumninium alloys and new thermal treatments
are being developed and used in preference to more costly titanium alloys. Consequently the
percentage of titanium in civil airframes remains low e.g. Boeing 747 (4%), 767 (2%), Douglas
DCIO (3%), Airbus A300B (6%/--wing weight). A notable exception is the Lockheed L_01I
where 14% of the structural weight is titanium. Titanium levels in civil transport aircraft engines
however, have grown (up to 20-25%) in common with military aircraft engines. In general,
the projected usage of about 30% in future aircraft appears well-founded and achievable, with
military aircraft leading the way.

"* "Self-fluxing" characteristic arises as the oxide film is dissolved in titanium at elevated

temperature in inert atmospheres.
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Table 4. Titanium usage in Military Airframes.

10,000 9800
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F15C F14 F18A F4 F16

Aircraft Designation.

Despite considerable improvements in the strength/fracture toughness properties, and
service experience, with 6AI-4V alloy, it is predicted that a greater range of titanium alloys will
be employed in the future. Many of the newer alloys (Fig. 1) are eminently suitable for the
processing options to be introduced into future aircraft and already some current production
programmes have been modified to allow these processing options to be phased in. Creep and
oxidation resistance is being steadily impruved, with significant gains in the newer alloys (Fig. 2).

Challenges to titanium usage are maintained with aluminium alloy and steul developments.
A new series of aluminium alloys have appeared with stricter controls on minor (impurity)
element levels (Fe + Si) e.g. 2224, 2324, 701K. 7050, 7150, 7475 with new aging tempers T73
and T76 or RRA (a retrogression and reaging of T6 temper without sacrifice in strength which
may be applied to 7075). These alloys and heat-treatments are far more resistant to stress-
corrosion cracling than the widL!y used 7075-T6 aluminium alloy.

The development c' aluminium-lithium alloys, with 12-15% reduction in conventional
aluminium alloy densiiy and increased elastic modulus, offers the possibility of very much higher
strength-to-weight ra,;o for aircraft structural application. However, with aircraft speeds above
mach 2.2, aerodynamic heating imposes temperature limitations on the utilization of aluminium
alloys. Replacement by titanium allows potential speeds of mach 3.0 or more (the US-SST, a
largely titanium aircraft, had a projucted speed of mach 2.7 to 3.0)

The challenge of steel comes with the development of alloys such as AF 1410, combining
high strength and high fracture toughness with good corrosion resistance. This steel (14%/o Co,
10% Ni, 2% Cr, 1 % Mo, 0. 16% C, 0. 15 % Mn) exhibits far greater specific strength and tough-
ness than 6A1-4V titanium and until recently*, a much lower cost. While newer improved titanium
alloys are available, the cost disadvantages would remain. However, for titanium, there is
considerable potential for making further gains in powder-processing, in novel fabrication
technology, and in more efficient materials utilization, to continue the strong growth in titanium
usage.

* The strategic importance, supply and high cost of cobalt has curtailed further develop-

ment of this steel.
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APPENDIX I

Iltanlum Alloy Compostion

The following one hundred and sixty-five chemical compositions are classified in an alpha-
numeric sequence with more important alloying elements, such as Al. V, Mo, etc., leading the
classification.

The division into alloy types indicates the predominant crystal structure and hence certain
physical properties (see Table 3). This division is somewhat arbitrary as final heat treatments
may, in some cases, determine the phases present.



AI Tkmim Aly

Weight Percent
Common Olwr

Name M V Mo Sn Zr Mn C, F, Cui Pd Nb T. Si W IEesuaa,

Commercially 4 -, i99.OTi
Pure Grades 3 99.21Ti
(IMI 125. 2 99.5 Ti
130. 155, M) 11 .6Ti

3
3 6 5-

4.5 2.5
5
5 2 5

IMI 317 525
5 5 55 22

5 0-5
6 I

6 2"5
7 12
7 1;
7 2 1
8 2 1

2
IMI 230 2-5
IMI 115 0.15.

-o020'
0-15-0.25;
0- 15ý

;-0-.301

4.5

1 -0-2-0 Ni



Supr Alphf (km ka,.l) AU

Weight Percent

Common .- - OIher-
Name AI V MoISn Zr Mn Cr Fe Cu Pd Nb Ta Si W Element%

I I

IMI 679 '2"25! I II 5 10"2
3 0.5 6 5 I 0.4
5 2. 85 0 2 105
5 I 6 2 r02

5 2 5 2 0.25
IMI 829 5,55. 2.5 3 I 3 0-35

6 0.5 0.5 2 4
6 I 4
6 I 4
6 0 0.7 5 0-3 0.2
6 I I 1 2
6 0-5 '0.5

IMI 685 6 0.5! 5 0.25
6 0.8 2 I
6 0"8 1 2
6 1 6
6 I I0.15

Ti ll 6 1 2 1"5 1 0.1 0-35 Bi
6 2 2 4 0-1
615 01 5
6.5 1 i 2

7 1 1 0.5 Co
7 2 3

it I, 0 Co
8 I 0-5Co



AlplBeuta Alloys

Weight Percent
Common I Other

Name Al V Mo Sn Zr Mn! Cr Fe Cu Pd Nb Ta Si W I emenus

1 1 -5 !
1.5 1.5
2 4
2 7.5

IM! 315 2
2"3 4-6 11.2
2"5 4 2 0.5

[MI 680 1 2-5 4 11I 0-25
3 2I

3-2"5 3 2"5
3 2 6 5 0-4
3 3 3
3 1.5
3 3 3
3* * total 1-5%

3 5

3 5 3
3.10.2 3 10 12 near-beta
4.1.3 4 1 3

4 1 3 0.2
4 2

IMI 55O 4 2 40-5
IMI 551 4 4 4 0-5

4 1"5
IMI 314 4 4

14 4.5
4 4

4*14-25 I- 4 O.IRe

4.5 3-5

Corona 5 1.5 5

4-5 /o4"5 ! * * totall /

5 2 2 2
5 1.3 near beta
5 1 . I"

5 1.2 14 1 4
5 2 5 2 0.25

Ti 17 5 4 2 2 4 I near-beta
5 4 5 2 0-25
5 5 0-3 1
5 2.75 "25 I
5 _ 3 1_



Alpha.Beta Adleys (Continued)

Weight Percent
Common .other

Name Ai V Mo Sn Zr Mn Cr Fe Cu Pd Nb Ta Si W Elemets

5.2 55 09 0.5
5.5 4
6 45 2
6 2 2 2
6 3 I

6-4 (IMI 318) 6 4
6 4 2
6 4 0.2
6 4 3 Co

6 5 I 2 3 1 I 1
6 5 5 2 4
6 6 2 0-5 05
6 6 2 I 1
6 6 2.5 0.5

6 .6 .2 6 6 2
6 6 2 6
6 6 2 6 0.5 0-5
6 0-5 0.5
6 I 2 5 0.25
6 1 1"5 1"5

6-2"2"2"2 6 2 2 2 2 0"25
6 2
6 2 4 2 1 0-2

IM1 700 6 4 5 1 0"2
6-2"4"6 6 6 2 4

6 6 4 4
6 1"5 1-5

IMI 684 6 502 1
6"5 3'5 0-25
6"5 3"5 2 0-25
6 "5 1 5
7 0.5 1"5
7 1 I
7 2 "5
7 3
7 4
7 2 13

2.3 30-8 Ni

1.5 2.5
2 2 2

3 3 3
7
8

L ...



Beta Aloys

Weight Percent
Common . . . . . . . ....... .. . . ... .. . . . Other

Name At V Mo Sn Zr Mn Cr Fe Cu Pd NbWTa SiW Elements

I 5

Transage 129 2 II 2 IInear-

2 16 4 ae
2.5 4.5 5 near-beta
2,5 5 5 1.3 ! near-beta
2"5 8 10
2"5 4 71
2-5 8 4-5

2.5 to 6
2.5 16
2-9 15
3 6 4 4 6
3 7 3"5 10
3 8 2 4 2

Beta C 3 8 4 4 6
3 8 4 6 6

3.8.8.2 3 8 8 2
3 8 8 4 6
3 8 4 1 7
3 12-5

3.13.11 3 13 II
15.3.3.3 3 15 3 3

3 7 i5.5 3i3 il
37.5 i

61 12
10 5.4

II 35
II 511-5

Beta 111 I5 45 6
1MI 205 15 i

15 5
32
32 1 ____5
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